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U(6, 6) symmetry and the generalized 
Veneziano model for K - p  -+ K*-lc+n 

D BARKAIt and K J M MORIARTYT 
t Physics Department, Imperial College of Science and Technology, Prince Consort Rd, 
London SW7, UK 
$ Department of Mathematics, Royal Holloway College, Englefield Green, Surrey. UK 

MS received 28 March 1972 

Abstract. U(6,6) symmetric kinematic factors are combined with the generalized Veneziano 
model. The model is applied to K-p + K*-n+n. Some arbitrariness of parameters is 
removed and comparisons with the data show the results are at least as good as in previous 
models. 

1. Introduction 

Some time ago a model for the study of three-particle production data was proposed by 
Petersson and Tornqvist (1969). In their model the sum over the 12 five-point Veneziano 
terms which describes the amplitude is multiplied by a kinematic factor K so that 

1 2  

A = K p ? ,  
1 

where K ,  for the processes considered (Petersson and Tornqvist 1969), was taken to be 

so that it gives an overall abnormal parity and where p i  are any four of the external 
particle momenta. Despite the considerable success of this model no account was taken 
of the spin or isospin of the external particles. Attempts to take them into account were 
made by constructing the supermultiplet Veneziano model (Mandelstam 1969, Delbourgo 
and Rotelli 1969, Bardacki and Halpern 1969). Application of the model (see also 
Adjei et al 1971a, 1972) amounts to giving a separate kinematic factor to each of the 
five-point Veneziano terms, or, equivalently, giving each B ,  term a different weight in 
phase-space. We take now 

1 2  

A = c K,Bi  
1 

where each K ,  is evaluated by employing the U(6,6) multispinor formalism (Salam et a1 
1965, Sakita and Wali 1965, Delbourgo et a1 1965) and applying it to the corresponding 
'legal' Harari-Rosner duality diagram (Harari 1969, Rosner 1969). The formalism 
will be briefly discussed in the next section. 
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It is amusing to note that in all previous applications, and presumably in all similar 
processes, the leading term, when taking the corresponding double-Regge-limit, is of 
the type of the kinematic factor K considered by Petersson and Tornqvist. 

We apply the ‘U(6,6)+Veneziano’ model to the process K-p -+ K*-n+n. This 
process was considered before, using the Petersson-Tornqvist kinetic factor (Collins 
et a1 1970, Adjei et a1 1971b). Firstly we are trying to see if there is a better fit to the 
experimental data than with the old model; and secondly, to see if there are any lessons 
to be learnt by applying the model for the first time to a process with an external spin one 
particle, in addition to the two spin half particles. It is found that the mass and momen- 
tum-transfer distributions fit the data reasonably well, but the algebraic complexity 
in evaluating the amplitude increases considerably. Furthermore, there is no one 
B ,  term which dominates in all regions, as was the case in previous processes considered. 
This is found by looking at that mass distribution which gets a resonance contribution 
from both the terms of the amplitude we take for K-p  -+ K*-n+n (see 0 4). 

2. Formalism. Construction of the kinematic factors 

To evaluate the kinematic factors K ,  in the amplitude 

A = K,B\ 

we employ the U(6,6) multispinor formalism (Salam et a1 1965, Sakita and Wali 1965, 
Delbourgo et a1 1965). All mesons are qCj combinations of spin half, SU(3) triplet quarks. 
They belong to the (6,6)- supermultiplet and are described by the wavefunction 

where E ,  p are Dirac spinor indices, and a, b are SU(3) indices. Similarly, a baryon is 
described by a completely symmetric combination of qqq and its wavefunction is given by 

+(cyclic permutation in MU, pb, yc)} 

(for notation see Salam et a1 1965). 
The kinetic term K ,  is the U(6,6) amplitude that we get by drawing the duality diagram 

corresponding to the ith ordering of the external particles, which are represented by 
quarks. This corresponds to a given way of contracting the quark indices A,  B etc which 
we deduce by following the flow of the quark lines (see figure 2). From @as and $ABC 

we will take only the SU(3) term in which the given external particle in the process under 
consideration is included. The U(6,6) symmetry is used only to construct a kinematic 
factor. All the dynamics, the resonance structure, we assume to be given by the B5 
function. A more detailed calculation of the kinematic factors for the process 
K-p -+ K*-n+n can be found in the Appendix. 
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3. Application to K-p + K*-n+n 

We take for the amplitude the contribution from the two diagrams shown in figure 1. 
This is dictated by the absence of exotic mesons (no diagram where K -  and 71' are 
adjacent) and the fact that no trajectory, which couple to the K - n  or K*-p subsystems, 
was found. Following the reasoning of Collins et a1 (1970) and Adjei et a1 (1971b) we 
assume all particles to lie on linear Regge trajectories, all having the same slope. 

, K"-  

n +  

Figure 1. The two permutations contributing to the amplitude 

The amplitude can be written then as 

with X i j  = J-cci,. x i j  is the trajectory coupled to the external particles i and j and J 
is the spin of the lowest resonance on this trajectory. The only exception is the shift by 

of the argument of the N ,  in order to get correct asymptotic behaviour. The choice of 
trajectories has been discussed in Collins et a1 (1970). We list them here again with only 
slight changes corresponding to changes of some experimental values for masses and 
widths of resonances 

a,(t,,) = - 0.3 + 0 . 9 ~ ~ ~  

cc,(t,,) = -0.0175 +0.9tP, 

aA(sn,) = 0.12 + 0 . 9 ~ ~ ~  + i0.36(sn, - so) so = (m, f m,)2 



U(6 ,6 )  and Veneziano model for K - p  --f K*-n+n 1367 

An imaginary part has been added to the trajectories above threshold to account for 
the width of the resonances. 

The complexity that arises from having an external spin one particle becomes 
apparent when one evaluates the kinematic factors according to the formalism de- 
scribed in the previous section. In figure 2 the two duality diagrams corresponding to the 
diagrams of figure 1 are shown. The flow of the quark lines is indicated. Following this 
flow and considering all mesons as ingoing we arrive at 

Ka = V B C ( n ) 4 g ( -  x+)$E(-K* -)~%K-)$FB,-~(P) 

K b  = $ABc(n)4:(-x+)$i(- K*-)di(K-)$ECF(P) 
where the arguments stand for the momenta of the particles indicated. The relevant 
term for the x- and K wavefunction is the SU(3) 45 term, that for K* is the SU(3) 4p 
term and for the spinors p and n it would be enough to consider the three terms in $ABC 

with the SU(3) matrix N , .  

*vK'- \ 

( b )  

Figure 2. The duality diagrams corresponding to the permutations of figure 1 

To evaluate K ,  and Kb we separate the SU(3) and the U(2,2) (Dirac) traces. There 
are nine terms in each K ,  and K , .  We take each such term, evaluate its SU(3) trace, 
multiply it by its U(2,2) trace and then add them up to give the Ki. Having the polariza- 
tion vector of K*- in addition to the four independent external momenta increases the 
complexity of the resulting expressions considerably. The explicit expressions for K ,  
and Kb with the details of their evaluation are given in the Appendix. For U(6,6) mass 
splitting we take for p, the meson mass, the average over the 0- octet and the 1 - nonet, 
and for m, the baryon mass, we take the average of the ++ octet. 

4. Comparison with experiment and concluding remarks 

Having the amplitude, the theoretical distributions are calculated using the program 
FOWL (F James CERN Program Library no. W505, unpublished) with Hopkinson's 
program (J F L Hopkinson 1969 Daresbury Rep. no. DNPL/P21, unpublished) for B, . 
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The predictions are compared with data at 6 and 10 GeV/c, and are shown in figures 
3-6. The data were taken from the results of the Birmingham-Glasgow-London (IC)- 
Munich-Oxford collaboration's exposure at 6.0 GeV/c and the Aachen-Berlin-CERN- 

I 6 GeV/c 

Figure 3. Mass squared distribution at 6.0 GeVjc for K-p  -+ K*-n+n.  

6 GeV/c 
362 emts 

Figure 4. Momentum transfer distributions at 6.0 GeV/c for K - p  -+ K * - n + n  
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Figure 5. Mass squared distributions at 10.0 GeV/c for K-p + K*-n+n. 
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Figure 6. Momentum transfer distributions at 10.0 GeV/c for K-p + K*-n+n. 

London(1CtVienna collaboration's exposure at 10 GeV/c. The experimental histograms 
were taken from earlier treatment of this process (see Hunt and Schonfelder 1969). 
The same bin width as in the experiment was used. For our amplitude (see Appendix) a 
long computing time was needed, so that histograms had to be weighted and summed up 
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(using different regions of the random numbers generated by FOWL, of course) in order 
to get the general form for a curve that can then be smoothed by hand. We have fixed 
the normalization parameter using the data at 6 GeV!c. 

In general we consider our results to be an improvement over those obtained by 
Collins et a1 1970 and by Hunt and Schonfelder (1969) and slightly better than those of 
Adjei et a1 (1971 b). This was obtained even though the number of free parameters has 
been reduced by imposing the U(6,6) symmetry upon the kinematic factors. The size 
of the peaks for s(K*n) and s(nn) fits better than in Adjei et al(1971b) (which has the best 
fits of all the references quoted), although the peak of s(nn) at 6 GeV/c seems to be shifted 
a bit. s(K*n) at 6 GeV/c shows more structure but seems to be in poorer agreement with 
the data than in Adjei et a1 (1971b). The momentum transfer distributions show n 
exchange dominance, which results in the forward peak. The status of the data for this 
process does not enable us to make more conclusive statements. 

The resonance structure is built in by the B5 Veneziano amplitude and we want to 
test here how it is modified by our kinematic factors. Quantitatively, it has reduced the 
peaks and enhanced the background to fit the data better. Also, by changing the unde- 
fined phase factor of the kinematic factor (being a U(6,6) amplitude) we have found that 
the peak of s(xn), which get contribution from both terms of the amplitude, has been 
eliminated when multiplying K ,  by eini2. It shows that K ,  and K b  are of the same order 
of magnitude, at least when s(nn) 2 1.5-2 GeV. 
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Appendix 

Here we evaluate the kinematic factor K ,  in detail. Writing explicitly all the terms in K ,  , 
which is given in 0 3,  we have 

1 
X - ( ( - f f * -  

2P 

+((a + m ) y S C ) a @ c , / r N ; g b }  

where N ,  (NI) is the ‘SU(3)-U(2,2)’ spinor corresponding to nb) ,  and all the mesons are 
considering as ingoing. 
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By suppressing the U(2,2) indices, and then the SU(3) indices we define the following 
expressions : 

Ktu'3' = (E"~~PZ~+ E ~ ~ ~ F ~ ~ +  E ' " ~ ~ ~ ~ ~ ) ( T , + ) ~ ( Z K * - ) ~ ( T K - ) ~  

( < f b r N ; o  + € b o r N ; f  + c a f r N ; b )  

where N and T are the SU(3) matrices for the +* spin baryon octet and 0- meson octet, 
respectively, and 

K,U"," = { N ~ ( n ) ( C - ' y ~ ( f i +  m))llB + P(n)(c- ' y S ( f i +  m))Pa + N p ( n ) ( ~ -  ' y S ( ~ +  m))ya} 

((-zf + P ) y 5 ( -  e*- + P ) ? I ~ ~ ( ~ K * - ) ( $ -  +Ph5)$ 

x {(( ,~+mbisC)+BNa(~) +( (a+m)~5C)BaN&p)  + ((a +mh5C)a+N&)} 

where c,(&-) is the polarization vector of K* - with helicity 1. Using these expressions 
K ,  can be written as 

K ,  = KyJ'3' .  KU'2 ,2 '  
192p3mZ 

and the 'scalar product' means that we take each of the nine terms in Kfu(3' and multiply 
it by the appropriate term in K:(',') and then add these nine products to get K,. 

Finding the SU(3) traces is trivial, and two of them vanish. When inspecting the 
remaining terms of K ,  we find that only two of them are different. The y s  and C (the 
particle-conjugation matrix) are easily commuted through. 

Writing q l ,  q 2 ,  K for the momenta of E + ,  K*-, K -  respectively we find the two traces 
to be evaluated to be 

") (( - dl  + PI ( a 2  + P M  - c + PI @ + Nfi + "") 
= 2(P, n+m2)"((-a1 + P ) ( d z + P ) 4 -  B+P)")) 

and 

(w4 ((P + - c + P ) 4 ? 2  +PI(  - d 1 + P)(H + m)")). 

From now on the calculation is straightforward but tedious. Using the standard tech- 
niques for evaluation of traces of y matrices we finally get 

m2p3 K ,  = NO{4(p.n + mZ)(  13p2(K.c + q l . c )  + 44qzq1K.c + 8qz.Kq1.c - 4 4 q l  K q ,  

-8c.Kq,.q1)+8w(K.q1 -K.qz+qz.ql)r.(p+n)+8m~(p+n).((q, -q , )K . r  

+ ( K  + 4 2 ) ~ ~ q , ) + 8 ~ . ~ ( p ~ q l n . q ,  -P.clzn.q1)+ 8c*q,(p.q,n.K -p .Kn*q,)  

+ 8 K q z ( p ~ r n q l  -pqln .c)+  8K.q l (p .q2n .c -p . tn .q , )  

+ 8q,.q,(p.m.K-pKn.~)+ 16m,ucq1(n.K + m p ) } ( R , N , )  

- 12(p.n+m2)K,cvq2,ql ,~Iv , , (~ ,~sNl)  + {@P(p.Kn*(q, - q 2 )  

-pqzn4ql + K ) + p . q , n . ( q z + K ) ) + 2 0 @ . n + m 2 ) ~ 3  

+(pn+mZ)p(20Kq2 -84K.q' -20q2.ql)cI+ { 8 ~ ( p ~ n . ( q 1  - q 2 )  

- n.cp.(ql + K ) )  + 20b.n + m 2 ) w ( q ,  - K)q,, + ( 8 , ( n q ~ ( K  + qz )  

-n*cP(q, - q z ) ) + W P n  + m 2 ) ~ c . q i ) K ~ + + 8 ~ ( p . c n . ( q ,  + K )  
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+ (4mp(p + n).(K - q2)  + 4(p.q2n.K - p .Knq2)  - 6(m2 + p n ) ( K q 2  +p2)rrq lv  

+(4mp(n.t-2pc)+4(p~q1n.r-2prn.q1)-6(m2 +pn)ql.r)K,q2, 

+ (- 4mp(p + n).c + 4(pmq2 - pq2n.e))K,qlv + ( - 4mp(p + n).r 

+ 4(p.Kn.r - p.6n.K) + 6(m2 + pn)K4q2,q,  v } ( N 2 i ~ p ~ N 1 ) .  
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